The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis.
نویسندگان
چکیده
To find the genes controlling quantitative variation, we need model systems where functional information on physiology, development, and gene regulation can guide evolutionary inferences. We mapped quantitative trait loci (QTLs) influencing quantitative levels of enzyme activity in primary and secondary metabolism in Arabidopsis. All 10 enzymes showed highly significant quantitative genetic variation. Strong positive genetic correlations were found among activity levels of 5 glycolytic enzymes, PGI, PGM, GPD, FBP, and G6P, suggesting that enzymes with closely related metabolic functions are coregulated. Significant QTLs were found influencing activity of most enzymes. Some enzyme activity QTLs mapped very close to known enzyme-encoding loci (e.g., hexokinase, PGI, and PGM). A hexokinase QTL is attributable to cis-acting regulatory variation at the AtHXK1 locus or a closely linked regulatory locus, rather than polypeptide sequence differences. We also found a QTL on chromosome IV that may be a joint regulator of GPD, PGI, and G6P activity. In addition, a QTL affecting PGM activity maps within 700 kb of the PGM-encoding locus. This QTL is predicted to alter starch biosynthesis by 3.4%, corresponding with theoretical models, suggesting that QTLs reflect pleiotropic effects of mutant alleles.
منابع مشابه
Molecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملEvaluation of Genetic Variation of Common Fig (Ficus carica L.) in West of Iran
This study describes morphological diversity and relationship of 14 cultivars and 133 wild fig accessions from central Zagros Mountains located in the west of Iran, based on 58 morphological characters. Among all characters, secondary drooping branches, number of bark tubers, shape of central lobe, length of central lobe/length of lamina, little lateral lobes, shape of leaf without lobed, fruit...
متن کاملMorphological, Molecular and Phytochemical Variation in Some Thyme Genotypes
Thyme is an important medicinal plant in cosmetic, pharmaceutical and food industries. The first step for breeding of thyme is evaluating of genetic variation and relationship between thyme’s accessions. Therefore, the objective of this study was to evaluate morphology, chemical and molecular variation of 13 accessions of Thyme medicinal plant. ANOVA showed significant differences between acces...
متن کاملMicroarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...
متن کاملGenetic Variability in Growth Hormone Gene and Association between Restriction Fragment Length Polymorphisms (RFLP) Patterns and Quantitative Variation of Live Weight, Carcass, Behaviour, Heterophil and Lymphocyte Traits in Japanese Quails
Growth hormone gene plays a critical role in regulating growth and metabolism which leads to potential correlations between the polymorphisms of this gene and economic trait. A 776 bp fragment within the intron 1 region of the growth hormone gene from 346 individuals of an F2 population of Japanese quail was amplified. The polymerase chain reaction (PCR) product was digested using MspI restrict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 149 2 شماره
صفحات -
تاریخ انتشار 1998